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The Lévy noise, with a long-tail distribution induced particle escape from a metastable potential, is shown
to display a feature called a cancellation phenomenon, as compared to the Brownian motion case. As a
consequence, the escape rate is found to be a nonmonotonous function of the Lévy index � and the Arrhenius
law is not obeyed. We have also derived a rate expression using the reactive flux method, which supports our
numerical findings, namely, with the decrease of �, a large positive flow is allowed to establish at the barrier,
however, the probability passing over the saddle point decreases. This implies that the particles outside the
barrier come back to the inside and cancel with themselves.
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The process of noise-driven escape of particles over a
potential barrier, i.e., the well-known Kramers problem, is
ubiquitous in natural science �1,2�. The inverse of the steady
escape rate, varying on a logarithmic scale, is a linear func-
tion of the inverse noise intensity at weak noise. This is
called the Arrhenius law �3�. The key point in the barrier
escape dynamics was assumed by Caldeira and Leggett �4�
that the phase relationship between the amplitudes for being
on different sides of the barrier(s) can be neglected, since
once outside the barrier the system never comes back and
interferes with itself. This procedure relies on the single-
event probability of the reaction coordinate. However, this
raises the question if the noise is a non-Gaussian one,
whether the rate constant will still follow the Arrhenius law
and increase when diffusion becomes fast. The barrier pas-
sage process driven by a structured noise needs to be studied
in detail, which may play a dominant role in many processes,
for instance, collision of molecular systems, atomic clusters,
biomolecules, fusion of massive nuclei, stability of a meta-
stable state, etc.

In the ordinary Brownian motion, the statistics of a
random walk is given by a Gaussian distribution. There
are, however, many processes in nature which are character-
ized by anomalous diffusion due to various statistical
properties of the environments. Lévy flights of a force-free
particle constitute a generalization of ordinary Brownian
motion with a mean square displacement �x2�t��� t2/�

�5–7� where � is the Lévy index taking the values 0��
�2. In fact, the second moment of a Lévy flight diverges.
This is an effective scaling only, which has been used
to model a variety of processes �6� such as bulk-mediated
surface diffusion and application in porous glasses and
eye lenses, transport in micelle system, single molecule
spectroscopy, and even the flight of an albatross. The
dynamics driven by a Lévy noise differs from the regular
Brownian motion by the occurrence of extremely long
jumps. Recently, Chechkin et al. �8� found that Lévy
noise induced a crossover from unimodal to bimodal
behavior at stationarity in a nonlinear oscillator. Romero

et al. studied the first passage time statistics for a system
driven by a long-range correlation Gaussian noise �9�.
Ditlevsen �10� considered a particle subjected to Lévy
noise jumping between asymmetrical double-stable
wells, the result shows that the waiting time scale is a
power function of � and the height of the barrier has no
influence on the transition probability. To our knowledge,
application of long-tailed Lévy statistics to barrier escape has
not been discussed yet.

In this paper, we report a cancellation phenomenon of the
barrier via Langevin simulations of a particle subjected to a
Lévy noise in a metastable potential. Physical understanding
of the process is provided, which differs from normal
Brownian motion �2� in that the low-friction regime �i.e., the
energy-diffusion limited regime�, the reaction rate is very
low and even more so as it approaches to zero �11�. An
expression of the rate constant is obtained using the reactive
flux method. Here, the metastable case is also different from
the bistable case because the two reflecting boundaries will
influence the barrier passage with a long jump induced by
Lévy noise in the latter case. The theoretical predication sup-
ports our numerical findings.

The equation of the motion of an overdamped particle
reads

ẋ�t� = − U��x� + L�t� , �1�

where the zero-mean noise L�t� obeys Lévy statistics. In the
Fourier space one defines the characteristic function p�k� of
the noise variable L�t� �5,7�,

p�k� =� dLexp�− ikL�p�L� = exp�− D�k��� , �2�

where D is the intensity of Lévy noise and p�L� is a Gaussian
distribution when �=2.
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We use the stochastic Runge-Kutta algorithm �12� to
simulate Eq. �1� discretized in time �13�. Time-dependent
escape rate is determined numerically by �14,15�

r�t� = −
1

N�t�
�N�t�

�t
, �3�

where N�t� denotes the number of test particles that have not
undergone escape at time t, and �N�t� is the number of test
particles that have undergone escape from the barrier within
a time interval t→ t+�t where �t is chosen to be much
larger than the interval between two successive escapes �16�.
When the escape rate is introduced, the test particles are
accounted in the term N�t� the whole time due to the recross-
ing conclusions are presented.

The metastable potential is chosen in such a typical
form

U�x� =
1

2
m�0

2x2	1 −
x

xb

 , �4�

we chose xb=1.5�6 and m�0
2=1.0 in order to make the

height of potential barrier Vb=1.0. In the calculations, we
rescale the coordinate and energy, their units are �D / �m�0

2�
and D, respectively, the integration time step is h=0.001 for
Eq. �1�, �t=0.1 in Eq. �3�, and initial distribution of the
system is a � function at the well bottom with N0=105 test
particles.

Figures 1�a� and 1�b� show time-dependent escape
rate and decay probability of the particle for various �,
respectively. It is seen that the transient time decreases
with the decrease of �. This is due to a fact that diffusion
of the particle becomes faster when the Lévy index
decreases. The larger the slope of the decay probability, the
larger the escape rate is. After a transient time, the ratio

of the recrossing flux at the barrier to the amount of particles
remaining in the well approaches a constant. Since a
statistical number of test particles within the well decreases
with time, fluctuation of the rate around the average
value increases. The formation of a steady escape rate is
accompanied by an operation of time-dependent normaliza-
tion in Eq. �3�.

In Figs. 2�a� and 2�b�, we plot the stationary escape
rate as functions of � and D. As expected, the stationary
escape rate increases when the noise intensity increases.
The escape rate is an increasing monotonous function of D
because the particle becomes active with increasing D.
Indeed, we find a prominent result. The stationary escape
rate is a nonmonotonous function of � when the centered
distribution of the system has moved outside the barrier
and the increase of distribution width with time is faster
than the movement of its peak position. Thus, a tail of
the distribution behind the barrier enters in the well again,
leading to a negative flux over the barrier. At the same
time, the particles inside the barrier will cross over the
saddle point and produce a positive flux. Therefore, the
total probability flux decreases and we may call this phenom-
enon a cancellation one. Due to this cancellation phenom-
enon in the barrier region, the dependence of the stationary
escape rate on the noise intensity deviates from the Arrhenius
law.

We use the method of reactive flux �17,18� to derive an
expression of the rate constant in a generic damped case,
where trajectories of the particles are started at the top of the
barrier. The rate constant is defined by

k�t� =
�v0��x0��P�x�x0,v0,t���

��R�x0��
, �5�

where �R�x�x0 ,v0 , t�� is equal to 1 for x�0 and 0 otherwise,
and �P is just 1−�R. Considering the normalized phase-space
distribution that corresponds to an ensemble of particles
starting at �x0 ,v0� at t=0, and undergoing a Lévy walk, we
have the steady rate constant,

FIG. 1. Time-dependent escape rate �a� and decay probability
�b� for various � at a fixed noise intensity D=0.5.

FIG. 2. �a� The stationary escape rate as a function of the Lévy
index � at a fixed noise intensity D=0.5. �b� The Arrhenius plotting
of the rate for various �.
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k =
1

��R�x0���−�

�

dx0�
−�

�

dv0W�x0,v0�v0��x0� · 	�v0,t → ��

=
1

Q
�

−�

�

v0W�0,v0�	�v0,t → ��dv0, �6�

where Q is the partition function for reactions and the
distribution W�0,v0� for the initial velocity of particles
at the barrier is an even function of v0. Here, 	�v0 , t� is
called the characteristic function or the passing probability
over the saddle point, given mathematically by
	�v0 , t�=�0

�W�x� ; t�dx� �18,19�. It is a number that is equal
to one for reactive trajectories and zero for nonreactive tra-
jectories. Equation �6� agrees with the well-known Kramers
rate formula if �=2.

For a parabolic barrier, we adopt the analytical solution of
Jespersen et al. for the well distribution function �7�, simply
by substituting �, the frequency of the oscillator, by i�. The
adopted solution reads

W�x;t� = W0�x − �x�t��;tef f� , �7�

where W0 is the probability density function of free Lévy
flights �7� in terms of Fox’s H functions,

W0�x,t� =



��x�
H2,2

1,1� �x�
�Dt�1/��

�1,1�,�1,1/2�

�1,1/��,�1,1/2�� . �8�

Because the statistical average of Lévy noise is equal to
zero, the expression of mean position of the particle is the
same as that of the normal Brownian case and is written
as �x�t��=x0�1+�b

2�0
t ��t��dt��+v0��t� �19�. Here an effec-

tive time in the inverse harmonic potential is introduced as
tef f =�0

t ���t− t����dt�, where ��t� is the response function of
a normal particle in the inverse harmonic potential and is
given by ��t�= �a1−a2�−1�ea1t−ea2t�, where a1 and a2 are the
two roots of the equation a2+�a−�b

2=0 �� is the damping
coefficient� �19�. It is noticed that the inertia effect has
been included in the effective time. Thus, the distribution
function in an inverse harmonic potential can be obtained
from that in the case of free Lévy flight at an earlier,
“effective” time tef f �7�.

In Fig. 3, we plot time-dependent characteristic function
	�v0 , t�,

	�v0,t� =
1

2
+ �

0

�x�t��

W0�x�;tef f�dx�, �9�

for various �. When v0 is positive, the passing probability
can arrive at 1. It is seen that the stationary value
of the passing probability decreases with the decrease of �,
because the width of distribution increases with decreasing
�, namely, strong diffusion is harmful for directional
motion. When v0 is negative, the peak of distribution
moves along the left direction, the passing probability is al-
ways less than 1

2 . However, the width of distribution
increases with the decrease of �, thus strong diffusion
helps the particle crossing over the barrier along the right
direction.

Figure 4 shows the rate constant calculated by Eq. �6� as
a function of �. Here the metastable potential is chosen to be
a harmonic potential with the frequency �0 linking with an
inverse harmonic potential with the frequency �b. In the
spurt of reactive flux rate calculation, the initial conditions
are assumed at the top of the barrier �20�, which correspond
to the ensemble of trajectories which start with identical ini-
tial conditions but experience different stochastic histories
�18�. We can analyze nonmonotonous behavior of the rate
constant as a function of �. For a large �, the characteristic
function is also large, however, the distribution of initial ve-
locity of the particle is narrow, and thus the contribution of a
large positive velocity to the saddle flux is small. On the
other hand, for a small �, the characteristic function is also
small, however, W�v0� is wide and the contribution of a large
positive velocity to the saddle flux cannot be neglected.
Therefore there exists an optimal value of � and the peaked
position of rate curve drifts to small � when the damping
increases.

In summary, we have addressed a subject of Kramers rate
theory for process driven by scale-free Lévy noise. We find a
cancellation phenomenon of the barrier escape from both
analytical and numerical calculations. Namely, the rate con-
stant is shown to be a nonmonotonous function of the Lévy
index, and the Arrhenius law for the rate behavior is not

FIG. 3. Plot of time-dependent fractional reactivity index,
	�u0 , t� for two initial velocities. The solid and dashed lines are
the results of Lévy noise and normal Brownian motion, respec-
tively. �=2.0, 1.5, 1.0, 0.5 from top to bottom for v0=4.0
and opposite for v0=−4.0. The parameters used are m�b

2=1.0,
D=1.0, and �=2.0.

FIG. 4. The rate constant as a function of � for various friction
strengths. The parameters used are �0

2=�b
2=1.0, D=1.0, and the

barrier height Vb=4.0.
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obeyed at weak noise. This is due to the fact that the particles
outside the barrier come back and interfere with themselves
inside the barrier, so that faster diffusion does not conduce to
larger barrier escape. The present phenomenon differs with
the recrossing mechanism of the barrier for the regular
Brownian case, the latter assures a quasi-stationary flow

established at the saddle point. Of interest to us is the possi-
bility of whether there exist other non-Gaussian cases such
as an external noise source.
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